Study on Optimized Elman Neural Network Classification Algorithm Based on PLS and CA
نویسندگان
چکیده
منابع مشابه
Study on Optimized Elman Neural Network Classification Algorithm Based on PLS and CA
High-dimensional large sample data sets, between feature variables and between samples, may cause some correlative or repetitive factors, occupy lots of storage space, and consume much computing time. Using the Elman neural network to deal with them, too many inputs will influence the operating efficiency and recognition accuracy; too many simultaneous training samples, as well as being not abl...
متن کاملNumerical Analysis of Modeling Based on Improved Elman Neural Network
A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to d...
متن کاملPID Control of VAV System based on Elman Neural Network
As the air-conditioning control system has the nonlinearity, large time delay and time variation and other characteristics.In this paper,we put forward a method of self-adjusting PID algorithm based on the modified Elman neural network, and the output of the network adjust the three parameters of the PID controller online, so that it has the high controlling precision, good dynamic characterist...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Malaria Severity Classification through Jordan-elman Neural Network Based on Features Extracted from Thick Blood Smear
This article presents an alternative approach useful for medical practitioners who wish to detect malaria and accurately identify the level of severity. Malaria classifiers are usually based on feed forward neural networks. In this study, the proposed classifier is developed based on the Jordan-Elman neural networks. Its performance is evaluated using a receiver-operating characteristic curve, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Intelligence and Neuroscience
سال: 2014
ISSN: 1687-5265,1687-5273
DOI: 10.1155/2014/724317